Multiple Pregrasping Poses
Prediction Using Combining
DCNN and MDN




Introduction

- We address the problem of multiple pregrasp poses regression of a object
based on deep convolutional neural network (DCNN)

« Grasping is a multi-valued function in the sense that a specific pose of an
object can be grasped with different finger configurations

« Standard regression models fail in this case

- A pregrasp pose as the configuration where closing the fingers until
resistance is encountered can leads a proper grasp pose

« In this work, a single RGB-D image is used to determine multiple 3D
positions of three fingers



Related Works

Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot Hours
Abhinav Gupta, Carnegie Mellon University (2015)
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Related Works




Pre-grasping pose

|t is extremely hard to collect a great amount of training data using traditional kinesthetic
teaching procedure, where the human teacher directly moves the robotic arm to make the robot
performs pregrasp

* To overcome this problem, we detached robotic hand from the robot arm and attached optical
markers to ends of three fingers to track 3D positions of the fingers using optical motion capture
system




The Proposed Neural Network Architecture
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« Combination of a variant of traditional deep convolutional neural network and mixture
density network (MDN)

* A supervised learning technique to pretrain DCNN



Spatial Softmax

RGB image

«—
160

Depth image

160

Tud
y CONV
strite 2

¥ 160

¥ 100

convl conv2
o4 filters xS 64 filters 5x5
conv conv
Rell Rell)
—_— —
y B— 73
77

f cx
Jey

conv3

64 filters

spatial softmax

09

SC,E!I_?!

— eacﬁ/z?"j’ ea

o =25 Sl

1]

fo, = 24586Yss

feature
points
expected — L
2D position
> iy Fully
[ | Cdnnected — Connected
| | RaLU Rell
A ] —
128 |
- —
64| | -
192

[ | Fully

Connected
RelU

e

[T S Y

5]

[ %]

=T =1

5]



Mixture Density Network
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Mixture Density Network

Christopher M. Bishop, 1994 .
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Mixture Density Network

P = e = 28 oy = eaxp(2?
" > erp(z§) ik = i 1= CoP(E)

Parameters for the i-th Gaussian

| ! It — ()|
(X)) = o rpd —
%) = B e T B
The number of training data /The number of kernel in GMM

o~ o
(= Z —ln{z i (x7) o (t7]x7) }

1=



Mixture Density Network

*Backpropagation




Mixture Density Network

To overcome overflow
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Pretraining (* Autoencoder)
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Pretraining (Proposed)
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Pretraining

* Autoencoder
?




Experiment

« Dataset consists of 8 categories of objects ( cup, cellphone, pen, doll, lotion, can, small cylinder,
toy block)

*  The size of workspaceis Tm x Tm

The number of input images where each of them includes only an object is 180 and the number
of target pregrasp poses for the inputs is 54,000



Experiment

« 150~300 human supervised pregrasp poses were labeled for
an input

«  The number of input images where each of them includes
only an object is 550, pregrasp pose for the inputis 119,243




Experiment

1.DCNN + SP (Pretraining DCNN using the proposed supervised learning method)
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2.DCNN + USP + MDN (Pretraining DCNN using unsupervised learning method and combining MDN)

3.DCNN + SP + MDN (Pretraining DCNN using the proposed supervised learning method and combining DCNN and

MDN)
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Result

. Average pregrasp pose prediction error. DCNN+USP+MDN and

DCNN+SP+MDN select the mean of the largest Gaussian as the prediction

DCNNT4+SP | DCNNT+USP+MDN | DCNNT4+SP+MDN
AVE(known) 6.13cm 5.85cm 1.69cm
AVE(unknown) 6.52cm 5.79cm 2.53cm

. Average pregrasp pose prediction error. DCNN+SP+MDN select the mean of the second
largest Gaussian as the prediction

AVE(known)

1.8cm | AVE(unknown)

2.65cm




Result

« Advantage of the proposed supervised pretraining

(a) toy block

« Advantage of the use of MDN and proposed supervised pretraining

(c) doll (d) lotion

(a) doll (b) cellphone (c) can (d) cup (e) lotion



Result

Test data Image

2D Spatial Feature
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Robotic Grasping

Sungphill Moon, Youngbin Park and Il Hong Suh
Hanyang University, Korea.



What

Robotic grasping in the presence of various poses for seen
and unseen objects

Related works

Self-supervised learning is used to train deep neural network

Both mothods achieve outstanding performance but they require a lot of time to
collect traning due to random trials in self-supervised learning

Google : 14 robots, 2 months, 800,000 grasping attemps

CMU : 1 robot (two arms), 700 hours, 50,000 grasping attemps




How

Fig. 1. Demonstration of a grasp trajectory with detached hand.

* To address this problem, we detached the robotic hand from the manipulator. The human
teacher then grabbed the hand and demonstrated possible grasp poses as shown in Figure 1.
At the moment, a camera captures the demonstrations.

» This significantly reduces the time and human efforts but obvious drawback is that we can
not record joint angle trajectories exactly as we can do during typical kinesthetic teaching.



Visual inverse kinematics (VIKi) network

* Anovel deep neural network to predict joint angle configuration from a given segmented
robotic hand image
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Fig. 3. Examples of the input for VIKi network.



Two Deep Neural Networks for Grasping

Approaching Pre-grasping Holding Lifting

Fig. 4. Four steps for grasp tasks.

We assume that grasp task is composed of 4 consecutive trajectories. As shown in Figure 4,
they are approaching, pre-grasping, holding and lifting.

Among 4 steps, we developed two network for approaching and pre-grasping, respectively.
The implementation of holding and lifting can only be trivial.

Approaching network

The structure of the proposed neural network for approaching is identical to VIKi network.

The training input image contains an isolated object and the training output is the final
pose of approaching.

Pre-grasping network

The proposed neural network architecture for pre-grasping is identical to VIKi network as
well. The input of the network is an image containing an object and the robotic hand and the

training output is the subsequent hand pose for eventually making the last pose of
pre-grasping.



The role of VIKi network

Training data Training data

(11,121 1 VIKi [ 18 =]

* VIKIi can be considered as a function to transform an training output image to joint angles.
Original training data for approaching and pre-grasping networks is composed of a pair of an
input image I} and an output image I¢ . Io t is converted into joint angles J° via VIKi
function v



Experiments




