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Abstract. In this paper, we propose a deep neural network to predict
pregrasp poses of a 3D object. Specifically, a single RGB-D image is used
to determine multiple 3D positions of three fingers which can provide
suitable pregrasps for a known or an unknown object in various poses.
Multiple pregrasping pose prediction is typically complex multi-valued
functions where standard regression models fail. To this end, we pro-
posed a deep neural network that contains a variant of traditional deep
convolutional neural network, followed by a mixture density network. Ad-
ditionally, to overcome the difficulty in learning with insufficient data for
the first part of the proposed network we develop a supervised learning
technique to pretrain the variant of convolutional neural network.
abstract environment.
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1 Introduction

In the review of Sahbani et al. [1], grasping methods can be broadly categorized
as analytic and data-driven Most analytic methods assume the availability of
complete knowledge of the objects to be grasped, such as the complete 3D model
of the given object. These methods then construct a suitable grasp pose based
on criteria, such as force closure or stability. Therefore, grasp synthesis is usually
formulated as a constrained optimization problem over those criteria. Therefore,
analytic methods typically need to understand the precise 3D shape of the object
and require huge computation for solving the optimization problem.

Data-driven approaches, on the other hand, investigate the way to avoid such
disadvantages by imitating human grasping. These methods select a appropriate
grasp by means of building a direct mapping from vision to action. A majority
of these methods have hence more focus on use of vision-based features obtained
from RGB or RGB-D images to predict grasp locations. Learning visual feature
based on machine learning algorithm have enabled grasp pose estimation to gen-
eralize easily to novel objects encountered often in uncontrolled environments.
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The methods that capture the mapping from vision to action by a deep learn-
ing model [3], [4] has recently gained much attention thank to recent immense
success of deep learning in a wide variety of tasks, including robotic grasping
and manipulation [6], [5] as well as object recognition [7], semantic segmentation
[8], caption generation [9]. However, the main difficulty for deep learning is that
training deep neural network requires a large-scale data collection.

Fig. 1. First three images on the left side and last three images on the right side show
two qualitatively different pregrasp poses. In first three images, thumb appears in the
upper part of the image while in last three images thumb appears in the lower part of
the image. Three pregrasp poses on the left and right sides seem to be identical within
own group but they are slightly different.

Figure 1 shows pregrasp poses. We refer a pregrasp pose as the configuration
where closing the fingers until resistance is encountered can leads a proper grasp
pose. In this paper, we address the problem of multiple pregrasp poses regression
of a 3D object using deep neural network. Specifically, a single RGB-D image
is used to determine multiple 3D positions of three fingers which can provide
suitable pregrasps for a known or an unknown object in various poses. To this
end, we first create a considerably large number of human annotated pregrasp
data. In the dataset, an image containing only a specific pose of an object is
used as an input and the corresponding 150∼300 human-supervised pregrasp
poses are used for a set of labels. Here, at least two qualitatively different finger
configurations are included in the a set of labels.

In this case, it is extremely hard to collect a great amount of training data
using traditional kinesthetic teaching procedure, where the human teacher di-
rectly moves the robotic arm to make the robot performs pregrasp. To overcome
this problem, we detached robotic hand from the robot arm and attached op-
tical markers to ends of three fingers to track 3D positions of the fingers using
optical motion capture system. The human teacher then grabbed the robotic
hand and demonstrated possible pregrasp poses for a while, varying poses with
small continuous movements. At this time, various 3D positions of three fingers
are recoded via motion capture system. Again, a qualitatively different finger
configuration for the object pose is provided by the human teacher and iden-
tical demonstration procedure repeated. Figure 1 shows our data acquisition
procedure. It should be considered that all images in Figure 1 are not subject
for training data. Only 3D positions of three figures are recorded for targets.
Optical markers are omitted in the figure for displaying robotic hand clearly.
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The advantage of this data collection procedure is that much less efforts
are necessary to gather same amount of training data compared to traditional
kinesthetic teaching mentioned before. In this paper, we investigate pregrasp
poses prediction instead of the estimation of grasp poses to exploit this data
collection scenario. The rationale behind this is that the accurate pregrasp leads
successful robotic grasping with high probability.

We build our model primally based on traditional deep convolutional neural
network (DCNN). However, DCNN only is not sufficient to model robotic pre-
grasp especially in case that training dataset contains the data where there are
multiple possible pregrasps for a specific pose of an object. To address this inher-
ent limitations, we investigate a model that combines DCNN and mixture density
network (MDN) [10]. MDN has been shown to be successful for complex multi-
valued functions where standard regression models fail. The combined DCNN
and MDN is trained using the human annotated pregrasp dataset gathered by
proposed data collection procedure. It should be noted that in our dataset there
are a large number of pregrasp pose labels but relatively small number of images
containing objects are provided. In this case, DCNN cannot learn rich visual fea-
ture to predict suitable pregrasp location. Therefore, we initialize DCNN using
the proposed supervised pretraining method.

2 Related Works

In this section, we review several robotic grasping literatures on data-driven
approaches, in which we focus more on the studies that investigate use of deep
learning for prediction of grasp location. For a comprehensive survey of robotic
grasping, we refer the reader to recent surveys on the subject [1], [2].

The robot’s own trial and error experiences is a one way to collect training
data for grasp tasks [11], [12]. However, performing more than a few hundred
trial and error runs by a physical robot is usually difficult. Subsequently, such
small dataset often causes the machine learning models to overfitting. On the
other hand, human annotated benchmark dataset are used to train deep neural
network in a supervised way [13]. Cornell grasping dataset used in the study
contains 1035 images of 280 graspable objects. Each image is annotated with
several ground-truth positive and negative grasping rectangles. Each of these
patches is fed to the network to evaluate grasp quality scores. Therefore, several
feed-forward computations are performed to determine best grasp pose.

Self-supervised learning of grasp poses is another way to train deep neural
network in a supervised way. Pinto and Gupta proposed a self-supervised data
collection method without human supervision using a heuristic grasping system
based on object proposals [3]. They used most recently learned model to gather
data so that data collection procedure become more and more efficient. The
dataset has more than 50K datapoints and has been collected using 700 hours
of trial and error experiments using the Baxter robot having two grippers. Af-
ter training, given an image patch, an 18-dimensional likelihood vector where
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each dimension represents the likelihood of whether the center of the patch is
graspable at 0◦, 10◦, . . . 170◦ is estimated.

Levine et al. [4] present a self-supervised learning method similar to the work
proposed by Pinto and Gupta. However, the training dataset consists of over
800,000 grasp attempts on a very large variety of objects, which is more than
an order of magnitude larger than the dataset collected by Pinto and Gupta.
To obtain this huge dataset, it has taken two months, using between 6 and 14
robotic manipulators at any given time. A deep convolutional neural network
called grasp success predictor has been trained to determine how likely a given
motion is to produce a successful grasp. The performance of this method is state-
of-the-art for robotic grasping, but data collection procedure is time-consuming
and as in the work of [13], several feed-forward computations are required to
determine next movement.

Most closely related deep neural network structure to our proposed neural
architecture is proposed by Levine et al. [5] In this work, a novel DCNN archi-
tecture is investigated. Specifically, the first half of the network contains three
convolutional layers, followed by a spatial softmax and an expected position
layer that converts pixel-wise features to feature points. The expected position
layer provides accurate spatial reasoning and reduces the number of parameters
to avoid overfitting. The rest half of the network is developed to generate motor
torques of the robot arm for various object manipulation tasks. In this paper,
we adapt the idea converting pixel-wise features to feature points to build our
proposed deep neural network.

3 The Proposed Neural Network Architecture
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Fig. 2. The Proposed Neural Network Architectures.

The proposed neural network architecture is illustrated in Figure 2. The input
of the network is a 160 x 160 RGB image that contains only an object. First part
of the network contains three convolutional layers, followed by a spatial softmax
and an feature points layer that converts pixel-wise features to expected posi-
tions. The spatial softmax layer provides lateral inhibition, which suppresses low



ICONIP2016 5

activations and keeps only strong activations that are more likely to be accurate.
The feature points layer computes expected position (x, y) of each channel in
softmax layer. As shown in Figure 2, depth of each expected position is added
in feature points layer. The dimension of feature points layer is thus three times
more than the number of channel in softmax layer. In particular, adding depth
information does not play an important role and leads only slight improvement
in performance. As mentioned before, this part of network except adding depth
data is analogous to the network architecture proposed by Levine et al [5]. In
the following, we will refer the first part of the neural network to DCNN+ for
simplicity. We found that the proposed architecture achieves better performance
on the prediction of pregrasp poses compared to the architecture where DCNN+

is replaced by traditional DCNN. The spatial softmax and an expected position
layers are closely described in [14]. Second part of the network is mixture density
network (MDN) and is composed of three fully connected layers. In the follow-
ing sebsections, we will present the details of our two contributions: MDN and
pretraining of DCNN+.

3.1 Mixture Density network

An MDN combines a mixture model with an artificial neural network. This paper
employs Gaussian mixture (GMM)-based MDN to predict multiple pregrasp
poses. As shown in Figure 2, a set of 3D feature points is input for the MDN
used in the proposed neural network architecture. The activations in output layer
is in turn transformed to the parameters of a GMM. The GMM parameters can
be derived from the MDN as

αi =
exp(zαi )∑m
j=1 exp(z

α
j )
, µik = zµik, σi = exp(zσi ). (1)

Here, the parameters for the i-th Gaussian, mixture weight, mean and variance
are denoted by αi, µi and σi, respectively. m denotes the number of kernel in
GMM and in our experiments we used 5 Gaussians. In case of multivariate GMM,
µi is the vector, with component µik. µi in this work is 9 dimensional vector
because the pregrasp pose in this work is represented by 3D positions of three
fingers. Although zµi shown in Figure 2 is illustrated as scalar for visualisation
purpose but it is 9 dimensional vector as well. The covariance matrix for the i-th
Gaussian denoted by Σi and is equal to Iσi. The rationale behind this is that
the components of µi can be assumed to be statistically independent, and can
be described a common variance σi. The details of this discussion are described
in [10]. Full probability density function of an pregrasp pose t, conditioned on a
set of 3D feature points x is given as

p(t|x) =

m∑
i=1

αi(x)φi(t|x) (2)

where
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φi(t|x) =
1

(2π)c/2σi(x)c
exp{−‖t− µi(x)‖2

2σi(x)2
}. (3)

Here, c represents the dimension of input vector. The loss of training of the MDN
is to minimize the negative log likelihood given the training data as

` =

n∑
j=1

[
−ln{

m∑
i=1

αi(x
j)φi(t

j |xj)}

]
(4)

where (xj , tj) is a j-th input/target pair and n is the number of training data.

3.2 Pretraining

Our training dataset collected using the method described in Introduction has
more than 100,000 pregrasp poses but there are only 550 images that contain
object poses. To learn rich and valuable visual features can predict the suitable
pregrasp pose, we thus need to pretrain DCNN+ using more training data that
include various objects and a large number of different object poses. Finn et.
al [14] proposed unsupervised learning algorithm to pretrain identical network
structure, in which loss function is to minimize reconstruction error. However,
we found that this unsupervised learning often produces more than half of the
feature points on the background. To overcome this limitation, we proposed
supervised pretraining algorithm. The output of the network for pretraining is
the center position (cx, cy) of the object in the image. We collected additional
dataset for pretraining. The center position of the object was estimated by using
simple background subtraction algorithm. For supervised training, 19 objects
were used and 54,000 images were captured. To collect such amount of dataset
easily, we threaded objects and pulled the objects in several different directions.
At that time, the RGB-D camera continued to record the scenes.

4 Experiment

4.1 Experimental Setup

Dataset consists of 8 categories of objects such as cup, cellphone, pen, doll, lotion,
can, small cylinder, toy block. Three different objects were included for each
category in training dataset. The three object used in training and two more
objects were included for each category in test dataset. Figure 3 shows all objects
used for our training and test data. The objects in the right table are training
data and the objects in the left table are objects that are not shown in training
phase. The objects in the right table were employed for test as well but they are
shown in different poses to the ones in the training phase. The size of workspace
is approximately 1m x 1m. In training phase, an object was placed in 5 different
positions and was rotated 3∼8 times at the each position. 150∼300 human-
supervised pregrasp poses were labeled for an input. Therefore, the number of
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Fig. 3. All objects used for our training and test data.

input images where each of them includes only an object is 550 and the number of
target pregrasp poses for the inputs is 119.243. For test dataset, a known object
appeared 6∼7 different poses and a unknown object was placed in 5 different
poses. There are hence 20 and 10 test data for each known and unknown object,
respectively. The total numbers of test data for known and unknown objects
are 160 and 80, in that order. 100∼150 pregrasp poses are provided for ground
truth of an input in test dataset. For an input image, two qualitatively different
pregrasp poses are demonstrated by a human teacher in both training and test
dataset.

We have implemented three methods for pregrasp pose regression for the sake
of comparison: (1) DCNN++SP (Pretraining DCNN+ using the proposed super-
vised learning method), (2) DCNN++USP+MDN (Pretraining DCNN+ using
the unsupervised learning method proposed in [14] and combining DCNN+ and
MDN) and (3) DCNN++SP+MDN (Pretraining DCNN+ using the proposed su-
pervised learning method and combining DCNN+ and MDN). DCNN++SP+MDN
is the full implementation of our proposed methods.

We implemented the three methods based on Caffe. The number of epochs for
three methods in training phase are 35,000 and the training took approximately
18 hours on a system equipped with a NVIDIA TITAN GPU. All experiments
were conducted using the robotic hand with three fingers and the Microsoft
Kinect v2 was exploited for RGB-D camera.

4.2 Quantitative Results

In this sebsection, we present the numerical evaluation and comparison of the
performances of the three methods. We measured the performance on pregrasp
pose prediction using average error (AVE). While DCNN++SP predicts only one
pregrasp pose two methods that combine DCNN+ and MDN produce multiple
pregrasp poses. As illustrated in Section 3, the maximum number of the pregrasp
poses produced by MDN is 5. We can consider the i-th pregrasp pose reliable if
the corresponding αi in Equation 1 is larger than a certain threshold γ. γ was
set to 0.3 in this experiment. Then, for computing AVE, we should select one
pregrasp pose among the reliable predictions.
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As mentioned before, a test data has 100∼150 true pregrasp poses. For com-
puting AVE, we also select one ground truth which has the minimum euclidean
distances relative to the prediction. Euclidean distance for each finger is then
computed between the prediction and the selected ground truth. Average of the
three euclidean distance is determined as the error for the test data.

Table 1. Average pregrasp pose prediction error. DCNN++USP+MDN and
DCNN++SP+MDN select the mean of the largest Gaussin as the precition

DCNN++SP DCNN++USP+MDN DCNN++SP+MDN

AVE(known) 6.13cm 5.85cm 1.69cm

AVE(unknown) 6.52cm 5.79cm 2.53cm

Table 1 shows AVEs of three methods, where µi of highest αi is determined
for the prediction of DCNN++USP+MDN and DCNN++SP+MDN, respec-
tively. It is observed that the errors two comparison methods are significantly in-
creased compared to the proposed method. This result demonstrate effectiveness
of the two proposed methods: the use of MDN and the supervised pretraining
for DCNN+.

Table 2. Average pregrasp pose prediction error. DCNN++SP+MDN select the mean
of the second largest Gaussin as the precition

AVE(known) 1.8cm AVE(unknown) 2.65cm

The table 2 illustrate the advantage of combining DCNN+ and MDN. In
this experiment, µi of second highest αi is determined for the prediction of
DCNN++SP+MDN. It is noted that second reliable predictions produced by the
networks achieve lower performances compared to the AVEs obtained by first re-
liable predictions but the decreases are just small. This experiment demonstrates
the proposed network that combine DCNN+ and MDN can produces suitable
multiple pregrasp poses. In the case of DCNN++USP+MDN, the second highest
αi is never higher than 0.3 for all test data. This results support the hypotheses
that if poor visual features are learned in DCNN+ it is difficult to train MDN
successfully.

4.3 Qualitative Results

Figure 4 illustrate the advantage of the proposed supervised pretraining. It is
observed that most feature points obtained from the DCNN+ which is pre-
trained using our proposed method are located on the object while more than
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(a) toy block (b) can 

(c) doll (d) lotion 

Fig. 4. Each left image of (a-b) is input image. Each center image of (a-d) displays
values at feature points layer in Figure 2, in which DCNN+ is pretrained using unsu-
pervised learning. Each right image of (a-d) generated by pretraining DCNN+ using
the proposed supervised learning. Each feature is displayed in a different color.

half of the feature points generated from the DCNN+ which is pretrained us-
ing unsupervised learning are located on the background. It seems that such
small number of feature points come from objects can leads poor performance
of DCNN++USP+MDN on the quantitative evaluations.

(a) doll (d) cup (b) cellphone (c) can (e) lotion 

Fig. 5. (a-c) Known objects. (d-e) Unknown objects. Red dots represent ground truths,
blue dots are the prediction produced by DCNN++SP+MDN, and yellow and sky
blue dots are the predictions produced by DCNN++SP and DCNN++USP+MDN,
respectively.

Figure 5 illustrate the advantage of the use of MDN. It is observed that 3D
positions of three fingers predicted by DCNN++SP are located on the center of
the objects while the grasp poses predicted by DCNN++SP+MDN are similar to
the ground truths. DCNN++SP nearly predicts 3D positions of three fingers at
the center of the object because in training phase such regression can minimize
error between multiple grasp poses and a prediction.

5 Conclusions

In this paper, we presented a deep neural network architecture to predict mul-
tiple 3D positions of three fingers which can provide suitable pregrasps for a
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known or an unknown object in various poses. To this end, we proposed a deep
neural network that combines a variant of traditional deep convolutional neural
network and a mixture density network. Additionally, to overcome the difficulty
in learning with insufficient data for the variant of convolutional neural network
we develop a supervised learning technique to pretrain the network.

We evaluated the performance of the proposed deep neural network against
the two comparison methods. The results demonstrate the effectiveness of our
method. Specifically, the use of MDN make possible to predict multiple pregrasp
poses and the supervised learning pretraining enable rich and valuable visual
features can predict the suitable pregrasp pose to be learned.
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